A New Multiagent Algorithm for Dynamic Continuous Optimization
نویسندگان
چکیده
Many real-world problems are dynamic and require an optimization algorithm that is able to continuously track a changing optimum over time. In this paper, a new multiagent algorithm is proposed to solve dynamic problems. This algorithm is based on multiple trajectory searches and saving the optima found to use them when a change is detected in the environment. The proposed algorithm is analyzed using the Moving Peaks Benchmark, and its performances are compared to competing dynamic optimization algorithms on several instances of this benchmark. The obtained results show the efficiency of the proposed algorithm, even in multimodal environments.
منابع مشابه
A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملA New Optimization via Invasive Weeds Algorithm for Dynamic Facility Layout Problem
The dynamic facility layout problem (DFLP) is the problem of finding positions of departments onthe plant floor for multiple periods (material flows between departments change during the planning horizon)such that departments do not overlap, and the sum of the material handling and rearrangement costs isminimized. In this paper a new optimization algorithm inspired from colonizing weeds, Invasi...
متن کاملParameter Estimation of Loranz Chaotic Dynamic System Using Bees Algorithm
An important problem in nonlinear science is the unknown parameters estimation in Loranz chaotic system. Clearly, the parameter estimation for chaotic systems is a multidimensional continuous optimization problem, where the optimization goal is to minimize mean squared errors (MSEs) between real and estimated responses for a number of given samples. The Bees algorithm (BA) is a new member of me...
متن کاملIntroducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems
The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...
متن کاملDISCRETE SIZE AND DISCRETE-CONTINUOUS CONFIGURATION OPTIMIZATION METHODS FOR TRUSS STRUCTURES USING THE HARMONY SEARCH ALGORITHM
Many methods have been developed for structural size and configuration optimization in which cross-sectional areas are usually assumed to be continuous. In most practical structural engineering design problems, however, the design variables are discrete. This paper proposes two efficient structural optimization methods based on the harmony search (HS) heuristic algorithm that treat both discret...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. of Applied Metaheuristic Computing
دوره 1 شماره
صفحات -
تاریخ انتشار 2010